Friday, June 29, 2012

First Space-Bound Orion on Its Way to Kennedy

A major milestone has been achieved for NASA’s Orion program with the first Orion destined for space being shipped to the Kennedy Space Center. Construction on the spacecraft was finished at NASA’s Michoud Assembly Facility in Louisiana this week, and final outfitting and heat shield installation will take place at KSC.

This spacecraft will fly on Exploration Flight Test-1, an unmanned test that is scheduled two years from now. The EFT-1 flight will take Orion to an altitude of more than 3,600 miles, more than 15 times farther away from Earth than the International Space Station. Orion will return home at a speed of 25,000 miles per hour, almost 5,000 miles per hour faster than any human spacecraft. It will mimic the return conditions that astronauts experience as they come home from voyages beyond low Earth orbit. As Orion reenters the atmosphere, it will endure temperatures up to 4,000 degrees F., higher than any human spacecraft since astronauts returned from the moon.

This first Orion will fly atop a Delta IV Heavy, a rocket operated by United Launch Alliance. While this launch vehicle will provide sufficient lift for the EFT-1 flight plan, NASA’s SLS rocket will be needed for the vast distances of future exploration missions.

Following EFT-1, the first integrated flight test will launch an uncrewed Orion on the SLS in 2017. That test will put the entire integrated exploration system through its paces. The Orion spacecraft will have the capability to carry astronauts to the moon, asteroids, Mars and other deep space destinations. 

Tuesday, June 26, 2012

NASA Space Launch System Core Stage Moves From Concept to Design

The nation's space exploration program is taking a critical step forward with a successful major technical review of the core stage of the Space Launch System (SLS), the rocket that will take astronauts farther into space than ever before.

The core stage is the heart of the heavy-lift launch vehicle. It will stand more than 200 feet (61 meters) tall with a diameter of 27.5 feet (8.4 meters).

NASA's Marshall Space Flight Center in Huntsville, Ala., hosted a comprehensive review. Engineers from NASA and The Boeing Co. of Huntsville presented a full set of system requirements, design concepts and production approaches to technical reviewers and the independent review board.

"This meeting validates our design requirements for the core stage of the nation's heavy-lift rocket and is the first major checkpoint for our team," said Tony Lavoie, manager of the SLS Stages Element at Marshall. "Getting to this point took a lot of hard work, and I'm proud of the collaboration between NASA and our partners at Boeing. Now that we have completed this review, we go from requirements to real blueprints. We are right on track to deliver the core stage for the SLS program."

The core stage will store liquid hydrogen and liquid oxygen to feed the rocket's four RS-25 engines, all of which will be former space shuttle main engines for the first few flights. The SLS Program has an inventory of 16 RS-25 flight engines that successfully operated for the life of the Space Shuttle Program. Like the space shuttle, SLS also will be powered initially by two solid rocket boosters on the sides of the launch vehicle.

The SLS will launch NASA's Orion spacecraft and other payloads, and provide an entirely new capability for human exploration beyond low Earth orbit. Designed to be safe, affordable and flexible for crew and cargo missions, the SLS will continue America's journey of discovery and exploration to destinations including nearby asteroids, Lagrange points, the moon and ultimately, Mars.

"This is a very exciting time for the country and NASA as important achievements are made on the most advanced hardware ever designed for human space flight," said William Gerstenmaier, associate administrator for the Human Exploration Operations Mission Directorate at NASA Headquarters in Washington. "The SLS will power a new generation of exploration missions beyond low Earth orbit and the moon, pushing the frontiers of discovery forward. The innovations being made now, and the hardware being delivered and tested, are all testaments to the ability of the U.S. aerospace workforce to make the dream of deeper solar system exploration by humans a reality in our lifetimes."

The first test flight of NASA's Space Launch System, which will feature a configuration for a 77-ton (70-metric-ton) lift capacity, is scheduled for 2017. As SLS evolves, a two-stage launch vehicle configuration will provide a lift capability of 143 tons (130 metric tons) to enable missions beyond low Earth orbit and support deep space exploration.

Boeing is the prime contractor for the SLS core stage, including its avionics. The core stage will be built at NASA's Michoud Assembly Facility in New Orleans using state-of-the-art manufacturing equipment. Marshall manages the SLS Program for the agency.

Wednesday, June 13, 2012

NASA's Ocean Salinity Pathfinder Celebrates its First Year in Orbit

It's been a busy first year in space for Aquarius, NASA's pioneering instrument to measure ocean surface salinity from orbit.

Designed to advance our understanding of what changes in the saltiness of the ocean's top layer say about the water cycle and variations in climate, Aquarius took only two and a half months after its launch to start measuring global salinity patterns. Since then, it has also observed regional features such as the freshwater plume gushing from the Amazon River and localized changes in ocean saltiness following a tropical storm.

"It was a very remarkable achievement, that within such a short period of time after turning the instrument on we were producing very good-looking data," said Aquarius Principal Investigator Gary Lagerloef, of Earth & Space Research in Seattle. "It was beyond our expectations."

Lagerloef said that objectives for Aquarius' second year in orbit include correcting a few remaining calibration errors and validating the Aquarius dataset with thousands of direct in-water measurements of salinity.

The Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission is an international collaboration of NASA and Argentina's space agency. The satellite also carries instruments from partner institutions in Canada, Italy and France.

A Delta II rocket carrying the international observatory launched from Vandenberg Air Force Base in California, on June 10, 2011. Less than an hour later, the satellite separated from the rocket, started its deployment and established communications with ground stations.

"The first time the thing chirped, we got the data and posted it on the Web. It was just basic telemetry at that point, but it showed that all the systems we had put in place to share the data worked," said Gene Feldman, Aquarius project manager at NASA Goddard Space Flight Center in Greenbelt, Md. "We didn't get to pop champagne – we didn't have the time!"

Aquarius is the first NASA instrument specifically designed to study superficial ocean salinity from space, and it does it at a rate of about 300,000 measurements per month. It uses three passive microwave sensors, called radiometers, to record the thermal signal from the oceans' top 0.4 inches (10.1 millimeters). This signal varies depending on the concentration of salt and the temperature of the waters.

"An overarching question in climate research is to understand how changes in the Earth's water cycle – meaning rainfall and evaporation, river discharges and so forth – ocean circulation, and climate link together," Lagerloef said. Most global precipitation and evaporation events take place over the ocean and are very difficult to measure. But rainfall freshens the oceans' surface waters, and Aquarius can detect these changes in saltiness. "Salinity is the variable we can use to measure that coupling effect. It's a critical factor and it will eventually be used to improve climate forecast models."

Aquarius became operational on Aug. 25, 2011. The project's scientists soon created a map of global ocean saltiness using the first two and a half weeks of measurements, which had been compared against reference salinity data. The map showed variations in salinity patterns in much greater detail than Aquarius researchers had expected to see so early in the mission. Another welcome surprise was the observation of the effects on the ocean of Tropical Storm Lee (Sept. 2-3, 2011). Heavy rains produced a low-salinity feature that lasted more than a month in the Gulf of Mexico between the Mississippi River delta and the Florida panhandle.

Read more

Monday, June 04, 2012

Unmanned Aircraft Soars Above Hurricanes for 2012 NASA Mission

NASA will launch severe storm sentinels, an unmanned aircraft, over stormy skies in the beginning of this summer. It will enable forecasters and researchers to collect information on intensity changes and hurricane formation.

Many NASA centers have collaborated with federal and university partners for Hurricane and Severe Storm Sentinel (HS3) airborne mission that will enable detecting intensity change and hurricane formation within the Atlantic Ocean basin.

NASA's unmanned sentinels will autonomously take wings. The NASA Global Hawk is ideal for hurricane investigations as it can over-fly hurricanes at altitudes over 60,000 ft with flight durations of up to 28 h. Global Hawks were deployed for the Global Hawk Pacific (GloPac) environmental science mission and agency's 2010 Genesis and Rapid Intensification Processes (GRIP) hurricane mission.

Two Global Hawk aircraft and six different instruments will be used by HS3 during this summer that are being launched at a base of operations at Virginia-based Wallops Flight Facility.

HS3 will carry out the controversial role of the dry, hot, and dusty Saharan Air Layer in tropical storm formation and intensification. According to earlier studies, Saharan Air Layer can activate or hamper intensification. HS3 will observe whether deep convection within the storms’ inner-core region is a response to storms finding favorable sources of energy or a major driver of intensity change.

The HS3 mission will operate from June 1 to November 30, part of the Atlantic hurricane seasons. The 2012 mission will be performed from late August through early October.

Global Hawk aircraft will include instruments that observe the storms’ environment are the Cloud Physics Lidar (CPL), scanning High-resolution Interferometer Sounder (S-HIS), and the Advanced Vertical Atmospheric Profiling System (AVAPS) (dropsondes). The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) Doppler wind lidar is expected to soar during the 2013 mission.

The set of instruments that will fly on the Global Hawk focusing on the inner region of the storms include the Hurricane Imaging Radiometer (HIRAD) multi-frequency interferometric radiometer, the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) microwave sounder, and the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar.

Read more