Friday, December 28, 2007

AIBO

(Artificial Intelligence roBOt, homonymous with "companion" in Japanese) is one of several types of robotic pets designed and manufactured by Sony; there have been several different models since their introduction in 1999. Able to walk, "see" its environment via camera, and recognize spoken commands, they are considered to be autonomous robots, since they are able to learn and mature based on external stimuli from their owner or environment, or from other AIBOs. Artist Hajime Sorayama created the initial designs for the AIBO.

On January 26, 2006 Sony announced that it would discontinue AIBO and several other products as of March, 2006. It will also stop development of the QRIO robot. AIBO will still be supported until 2013 (ERS7 model), however, and AIBO technology will continue to be developed for use in other consumer products. AIBOware (the name is a trademark of Sony corporation), is the title given to the software the AIBO runs on its pink Memory Stick. The Life AIBOware allows the robot to be raised from pup to fully grown adult while going through various stages of development as its owner interacts with it.

Wednesday, December 19, 2007

Computer networking

Computer networking is the engineering discipline concerned with communication between computer systems or devices. Networking, routers, routing protocols, and networking over the public Internet have their specifications defined in documents called RFCs. Computer networking is sometimes considered a sub-discipline of telecommunications, computer science, information technology and/or computer engineering. Computer networks rely heavily upon the theoretical and practical application of these scientific and engineering disciplines.

A computer network is any set of computers or devices connected to each other with the ability to exchange data.

Wednesday, December 12, 2007

History of nanotechnology

The first use of the concepts in 'nano-technology' (but predating use of that name) was in "There's Plenty of Room at the Bottom," a talk given by physicist Richard Feynman at an American Physical Society meeting at Caltech on December 29, 1959. Feynman described a process by which the ability to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, so on down to the needed scale. In the course of this, he noted, scaling issues would arise from the changing magnitude of various physical phenomena: gravity would become less important, surface tension and Van der Waals attraction would become more important, etc.

This basic idea appears feasible, and exponential assembly enhances it with parallelism to produce a useful quantity of end products. The term "nanotechnology" was defined by Tokyo Science University Professor Norio Taniguchi in a 1974 paper (N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.) as follows: "'Nano-technology' mainly consists of the processing of, separation, consolidation, and deformation of materials by one atom or by one molecule." In the 1980s the basic idea of this definition was explored in much more depth by Dr. K. Eric Drexler, who promoted the technological significance of nano-scale phenomena and devices through speeches and the books Engines of Creation: The Coming Era of Nanotechnology (1986) and Nanosystems: Molecular Machinery, Manufacturing, and Computation[2], and so the term acquired its current sense.

Thursday, December 06, 2007

Broadcast messages and paging

Practically every cellular system has some kind of broadcast mechanism. This can be used directly for distributing information to multiple mobiles, commonly, for example in mobile telephony systems, the most important use of broadcast information is to set up channels for one to one communication between the mobile transreceiver and the base station. This is called paging.

The details of the process of paging vary somewhat from network to network, but normally we know a limited number of cells where the phone is located (this group of cells is called a Location Area in the GSM or UMTS system, or Routing Area if a data packet session is involved). Paging takes place by sending the broadcast message to all of those cells. Paging messages can be used for information transfer. This happens in pagers, in CDMA systems for sending SMS messages, and in the UMTS system where it allows for low downlink latency in packet-based connections.

Our taxi network is a very good example here. The broadcast capability is often used to tell about road conditions and also to tell about work which is available to anybody. On the other hand, typically there is a list of taxis waiting for work. When a particular taxi comes up for work, the operator will call their number over the air. The taxi driver acknowledges that they are listening, then the operator reads out the address where the taxi driver has to go.