Black holes, neutron stars and supernova remnants won't be able to hide in the fog of space for much longer.
NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission — which is due to launch this spring, though the agency has yet to pin down a date — will pierce the dust and gas shrouding sources of high-energy X-rays, revealing many secrets they have long managed to conceal, scientists say.
Although telescopes such as NASA's Chandra X-ray Observatory have probed the skies with X-rays before, these other instruments have focused on lower-energy bands.
"NuSTAR is going to be the first focusing high-energy X-ray telescope," said mission principal investigator Fiona Harrison of the California Institute of Technology.
Extreme events
The NuSTAR mission's increased sensitivity will allow it to probe the hearts of other galaxies for some of their most violent and mysterious objects, such as black holes.
Black holes form when a dying star collapses in on itself. As the stellar remnant becomes smaller and more dense, its gravitational pull becomes so strong that not even light can escape.
But as dust and gas fall inward, friction and other forces heat the material to millions of degrees. The resulting X-rays, detectable to NuSTAR, should allow astronomers to calculate how fast black holes are spinning, and understand more about how they formed, researchers say.
NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission — which is due to launch this spring, though the agency has yet to pin down a date — will pierce the dust and gas shrouding sources of high-energy X-rays, revealing many secrets they have long managed to conceal, scientists say.
Although telescopes such as NASA's Chandra X-ray Observatory have probed the skies with X-rays before, these other instruments have focused on lower-energy bands.
"NuSTAR is going to be the first focusing high-energy X-ray telescope," said mission principal investigator Fiona Harrison of the California Institute of Technology.
Extreme events
The NuSTAR mission's increased sensitivity will allow it to probe the hearts of other galaxies for some of their most violent and mysterious objects, such as black holes.
Black holes form when a dying star collapses in on itself. As the stellar remnant becomes smaller and more dense, its gravitational pull becomes so strong that not even light can escape.
But as dust and gas fall inward, friction and other forces heat the material to millions of degrees. The resulting X-rays, detectable to NuSTAR, should allow astronomers to calculate how fast black holes are spinning, and understand more about how they formed, researchers say.
Some material also shoots away from black holes in jets approaching the speed of light. The accelerated particles can vary in brightness over the course of time, and NuSTAR will be able to study how they change.
While NuSTAR will study some black holes in distant galaxies, it will also make observations closer to home.
"There is a black hole that's 4 million times the mass of the sun at the heart of the Milky Way," Harrison told Space.com. "It doesn't emit a lot of radiation, for reasons that are somewhat mysterious."
Occasionally, black holes "burp" or "hiccup," giving off a burst of radiation for unknown reasons. Observing the black hole in the high-energy X-ray spectrum should provide more clues about how this local black hole works, researchers say.
While NuSTAR will study some black holes in distant galaxies, it will also make observations closer to home.
"There is a black hole that's 4 million times the mass of the sun at the heart of the Milky Way," Harrison told Space.com. "It doesn't emit a lot of radiation, for reasons that are somewhat mysterious."
Occasionally, black holes "burp" or "hiccup," giving off a burst of radiation for unknown reasons. Observing the black hole in the high-energy X-ray spectrum should provide more clues about how this local black hole works, researchers say.
No comments:
Post a Comment